好像华夏队在奥赛上满分的几率的确挺高的。
苏牧突然一下子想到了这一点,才稍微释然了些。
难怪陈冰向自己的眼神一直都很稳定,重心都放在了其他几个队友身上,了领队估计也知道自己是十拿九稳的金牌了。
叹了口气。
亏他还激动了这么久。
这些题目,还没有“给颜小珂带什么礼物回去”这个问题的难度高。
终于。
苏牧翻了翻试卷,有点期待的放到了第三张。
这是a级的题目,按照惯例来讲,应该也是这次io里最难的一题。
“卧槽。”
刚刚到题目,苏牧就发出了惊呼。
并不是因为这道题目太难了,也不是因为这道题目太简单,而是因为这道题,居然靠的是欧拉乘积公式
“这尼玛真就是考千禧难题”
苏牧瞳孔收缩。
欧拉乘积公式是指狄利克雷级数可表示为一指标为素数的无穷乘积,这个公式证明了黎曼函数可表示为此无穷乘积的形式。
虽然说并不是黎曼猜想的变种,但是还真就被昨天陈冰给说中了
昨天陈冰主要就是给他们聊天,讲述的黎明猜想与理论大融合,没想到今天赛场上,直接就考到了欧拉乘积公式
这个题目考察的是欧拉乘积公式与基础数列。
需要证明一个普遍的特例结果。
欧拉乘积公式的证明十分简单,唯一要小心的就是对无穷级数和无穷乘积的处理,不能随意使用有限级数和有限乘积的性质。
虽然说作为io的压轴题难度是足够了。
但是苏牧怎么想怎么觉得有些奇幻。
难不成陈冰昨天就提前知道了题目特意过来跟他们聊聊天
不过,苏牧接下来往下面下去的时候,他就知道这只是一个巧合了。
因为这道证明题还是挺难的。
不仅仅和数列有关,而且还运用到了均值定理。
陈冰只不过是提到了一嘴黎明猜想而已。
今天的这道题目,还是要各个选手的真实实力请牢记收藏,网址最新最快无防盗免费阅读